Fatigue Prediction Verification of Fiberglass Hulls

نویسنده

  • Paul H. Miller
چکیده

The growing use of marine composite materials has led to many technical challenges and one is predicting lifetime durability. This analysis step has a large uncertainty due to the lack of data from in-service composite vessels. Analytical models based on classical lamination theory, finite-element analysis, ship motions, probability and wind and wave mechanics were used in this project to predict hull laminate strains, and fatigue tests were used to determine S-N residual stiffness properties of coupons. These predictions and test data were compared against two cored fiberglass sisterships having significantly different fatigue histories and undamaged laminates representing a new vessel. Strains were measured while underway and good correlation was achieved between predictions and measurements. Fatigue damage indicators were identified which could be used in vessel inspection procedures. Endurance limits were found to be near 25% of static failure load, indicating that a fatigue design factor of four is required for infinite service with this material. Standard moisture experiments using boiling water were compared with long-term exposure. Results indicated the boiling water test yielded significantly conservative values and was not a reliable means of predicting long-term effects. Panel tests were compared with a combined coupon and finite-element procedure. Results indicated the proposed procedure was a viable substitute, at least for the materials studied. A rational explanation for using thicker outer skin laminates in marine composites was identified through single-sided moisture flex tests. These showed that the reduced strength and stiffness due to moisture of the outer hull skin laminate could be compensated by increased thickness. Although the resulting unbalanced laminate is not ideal from a warping standpoint, the approach leads to consistent tensile failure of the inner skin when subjected to normal loads. Permeability considerations make this desirable for hull laminates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dramatic increase in fatigue life in hierarchical graphene composites.

We report the synthesis and fatigue characterization of fiberglass/epoxy composites with various weight fractions of graphene platelets infiltrated into the epoxy resin as well as directly spray-coated on to the glass microfibers. Remarkably only ∼0.2% (with respect to the epoxy resin weight and ∼0.02% with respect to the entire laminate weight) of graphene additives enhanced the fatigue life o...

متن کامل

Applicability of empirical models for evaluation of stress ratio effect on the durability of fiber-reinforced creep rupture–susceptible composites

Fiber-reinforced polymer–matrix composites are known to exhibit loading rateand time-dependent mechanical response. Their fatigue strength is determined by a complex interaction of damage processes governed by loading duration and cycle number. Apart from mechanistic approaches, a number of empirical models of various sophistication have been proposed to predict the durability of composites, di...

متن کامل

Energy-Based Prediction of Low-Cycle Fatigue Life of CK45 Steel and SS316 Stainless Steel

In this paper, low cycle fatigue life of CK45 steel and SS316 stainless steel under strain-controlled loading are experimentally investigated. In addition, the impact of mean strain and strain amplitude on the fatigue life and cyclic behavior of the materials are studied. Furthermore, it is attempted to predict fatigue life using energy and SWT damage parameters. The experimental results demons...

متن کامل

A new low cycle fatigue lifetime prediction model for magnesium alloy based on modified plastic strain energy approach

Nowadays, the technology intends to use materials such as magnesium alloys due to their high strength to weight ratio in engine components. As usual, engine cylinder heads and blocks has made of various types of cast irons and aluminum alloys. However, magnesium alloys has physical and mechanical properties near to aluminum alloys and reduce the weight up to 40 percents. In this article, a new ...

متن کامل

Prediction of Fatigue Life in Notched Specimens Using Multiaxial Fatigue Criteria

In this research, the effects of notch shape on the fatigue strength of 2024-T3 aluminum alloy notched specimens have been studied using experimental and multiaxial fatigue analysis. For this purpose, four set of specimens with different notch shape were prepared and then fatigue tests were carried out at various cyclic longitudinal load levels. Load controlled fatigue tests of mentioned specim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011